English version

Coordinatore del Corso: prof.ssa Anna BOTTASSO

Per informazioni:
Viviana PASTORINO
Tel. + 39 010 209 5232
E.mail: dottoratodiec@economia.unige.it
XXXIII CICLO DEL DOTTORATO


Obiettivi:

Il corso di Dottorato in Economia si propone di fornire agli studenti gli strumenti teorici ad analitici per comprendere i fenomeni economici, elaborare modelli teorici e svolgere analisi empiriche alla frontiera della ricerca economica. Tali strumenti vengono acquisiti attraverso la frequenza di corsi avanzati a loro dedicati, di scuole di specializzazione offerte anche da altre istituzioni di ricerca e accademiche, di corsi offerti dall’Ateneo e attraverso la partecipazione ad attività seminariali.
Inoltre l’obbligo di trascorre periodi di ricerca all’estero presso università straniere concorre a completare la formazione in specifici campi di interesse. In particolare, nell’ambito del XXXIII ciclo, verrà attivata una posizione in co-tutela con l’Università di Exeter, secondo quanto previsto dal progetto ERC 2016 (Horizon 2020) Ave TransRisk Average-Transaction Costs and Risk Management during the First Globalization SH6 (Sixteenth-EighteenthCenturies) che, in base alla Convenzione siglata tra i due Atenei, garantirà l’acquisizione di un doppio titolo di Dottore in Ricerca.

Percorso formativo:
Il percorso formativo prevede lo studio a livello avanzato delle principali teorie economiche anche in prospettiva storica. Particolare enfasi è attribuita alla conoscenza degli strumenti quantitativi necessari per l’analisi teorica e applicata, nonché all’uso dei principali software utilizzati nella ricerca scientifica. Tutti i corsi sono insegnati in inglese.
I principali temi di ricerca riguardano: Microeconomia, Macroeconomia, Economia Applicata, Political Economy, Econometria, Statistica, Storia economica, Storia del pensiero economico e Comunicazione finanziaria.

Figure professionali:
Il Dottorato di Economia forma figure professionali in grado di svolgere autonomamente attività di ricerca in ambito accademico, nei centri studi, all’interno di enti di consulenza pubblici e privati, presso organismi nazionali ed internazionali di supporto all’attività di governo e all’interno di aziende laddove sono richieste competenze economiche avanzate.

Prove di ammissione, programma e conseguimento del titolo:
Le prove di ammissione si svolgono generalmente nel mese di Luglio del precedente anno accademico (i dettagli si trovano nel bando pubblicato sul sito dell’Università di Genova).
Il programma è strutturato su tre anni e inizia nel mese di Novembre di ogni Anno Accademico.
Durante il primo anno gli studenti hanno l’obbligo di frequenza dei corsi a loro dedicati e delle attività seminariali organizzate dal Dottorato e dal Dipartimento
I corsi base, che vengono erogati nel periodo Novembre-Giugno, sono: Microeconomia e Macroeconomia Avanzata, Political Economy, Econometria, Teoria dei Giochi, Matematica per l’Economia e Storia economica e del pensiero economico.
Inoltre ogni anno vengono organizzati corsi brevi intensivi su argomenti specifici al fine di ampliare la conoscenza degli strumenti utili ai fini della ricerca scientifica.
La frequenza di scuole estive/invernali di specializzazione è auspicata e finanziata dal programma nei limiti delle risorse disponibili.
Alla fine del primo anno i dottorandi si orientano verso una specifica area di interesse e scelgono due supervisori, di cui almeno uno appartenente al collegio dei docenti del dottorato. Sulla base dei risultati ottenuti durante il primo anno il collegio dei docenti ammette i dottorandi al secondo anno durante il quale partecipano alle attività seminariali del Dottorato e iniziano la loro attività di ricerca, che dovrà essere svolta anche presso università straniere, previa autorizzazione del collegio e dei supervisor.
Alla fine del secondo anno i dottorandi presentano al collegio dei docenti i primi risultati del lavoro di ricerca. Il collegio dei docenti valuta l’ammissione al terzo anno in funzione della qualità del lavoro svolto.
Il completamento dell’elaborato finale è previsto alla fine del terzo anno di corso durante il quale la frequenza di congressi scientifici internazionali è auspicata e finanziata dal programma nei limiti delle risorse disponibili.
Il titolo di “Dottore in ricerca” viene acquisito in seguito al superamento di una prova finale in cui il candidato presenta e discute la tesi di fronte ad una Commissione d’esame composta da tre professori esperti della materia.



Programma dei corsi


Economic History and History of Economic Thought
The module of Economic History provides an introduction to the study of economic systems and economic phenomena of the past, focusing on major theoretical and methodological issues in economic history. The most important analytic tools and the main problems concerning the use of sources in economic history will be examined, as well as the implications in historical analysis of concepts derived from economic disciplines.
The module of History of economic thought focus on the following topics:
- Classical political economy and the "surplus approach": Physiocrats, Smith, Ricardo Marx
- The birth of the "supply and demand" alternative approach: J. B. Say
- The rise to dominance of the marginalist approach: Jevons, Menger, Walras
- Sraffa, the modern reappraisal to the "surplus approach" and its implications

References: Landreth, H. & Colander, D. C., History of Economic Thought, South-Western College Publ., 4th ed., 2001; Garegnani P., “Notes on consumption, investment and effective demand”, CJE 1978-79; Garegnani P., “Value and distribution in the Classical economists and Marx”, OEP 1984; Sraffa P., “Production of commodities by means of commodities”, CUP, 1975; The Theory of Value and Distribution in Economics, H. Kurz (ed), Routledge 2016; Keynes, Sraffa and the Criticism of Neoclassical Theory, N. Salvadori 6 C. Gehrke (eds.), Routledge 2011.

Econometrics
The course provides a survey of the theory and application of time series models.
The main topics are:
- Linear Time Series Analysis
  • Stochastic processes, covariance stationarity, strict stationarity, unit root processes, fractionally integrated processes, Wold decomposition theorem
  • Introduction to spectral analysis: Fourier transforms, Spectrum of a time series process, rate of decay of the spectrum for short and long memory processes
  • Arma, Arima, Arfima univariate models: estimation and principles of forecasting
  • Unit root tests, long memory tests, cointegration, model diagnostic
- Univariate Garch Models
  • Stylized facts of asset returns
  • Arch model: identification and covariance stationarity conditions, order identification, estimation, evaluation
  • Garch model: identification and covariance stationarity conditions, order identification, estimation, evaluation and forecasting
  • Asymmetric Garch models and leverage effects: Egarch, Qgarch, Gjgarch, Tgarch: identification and covariance stationarity conditions, order identification, estimation, evaluation and forecasting
  • Long memory in univariate Garch models: testing for long memory in the time series domain, forecasting in presence of long memory
- Multivariate Garch Models
  • Co-movements of financial returns: empirical and theoretical examples. Introduction to MGARCH models and specific issues
  • VEC and BEKK models: dimensionality issues, conditions for positive definiteness, iterative procedures for estimation
  • Factor Models
  • CCC models: dimensionality issues, conditions for positive definiteness, iterative procedures for estimation
  • Non parametric models
  • Testing in Mgarch models
- Applications
  • Option pricing
  • Asset allocation
  • Value at risk
References: Hamilton, “Time Series Analysis”, Princeton University Press; Francq, Zakoian “GARCH Models”, Wiley.

Mathematics for economists
The course provide students with the basic mathematical tools necessary for understanding economic theory.
The main topics are:
- Euclidean spaces
- Matrix Algebra: fundamental operations; eigenvalues and eigenvectors
- Linear Independence
- Functions of several variables
- Calculus of several variables
- Unconstrained optimization
- Constrained optimization: the Lagrange method
- Constrained optimization: the Kuhn Tucker method
- Ordinary differential and difference equations: the scalar case
- Introduction to dynamic optimization
References: Simon C. and Bloom L, “Mathematics for Economists”, Norton & Company.

Macroeconomics
The main topics covered by the course will be the following:
- Economic growth
  • The Solow model
  • The Ramsey model
  • Overlapping generations models
- Real rigidities and labour market institutions
  • The Competitive Model of the Labour Market: A Tale of Demand and Supply
  • Efficiency Wages: Adverse Selection: The Role of the Solow Condition; Moral Hazard: The Shirking Model
  • The Insider-Outsider Theory of Employment and Unemployment: Wage and Employment Determination in a Dynamic Insider-Outsider Model
  • Implicit Contracts
  • Hiring and Firing Costs: A Dynamic Model of the Labour Market
  • The Search and Matching Model
- Monetary policy
  • The theory of transmission mechanism in monetary policy: Money growth, interest rates and expected inflation in the absence of nominal rigidity; The term structure of interest rates
  • Empirical evidence: The empirical evidence of the quantity theory of money; the information conveyed by monetary aggregates
  • Dynamic inconsistency of monetary policy: A simple model of dynamic inconsistency: commitment and discretional solutions; Remedies to dynamic inconsistency: rules rather than discretion; conservative central bankers; A reputational model of monetary policy
  • The role of money in macroeconomic models and the implication for monetary policy
References: David Romer “Advanced Macroeconomics” McGraw Hill.

Microeconomics
The main topics covered by the course will be the following:
- Firm theory:
  • Technology and costs
  • The Optimization Problem
  • The short run and the long run
  • The multiproduct firm
  • The firm and the market
- Monopoly theory, price discrimination and natural monopoly
- Oligopoly theory
  • Duopoly theory (one shot games)
  • Collusive oligopoly (repeated games)
  • Market entry (sequential games)
- Consumer theory
- Information theory
  • Incomplete contracts, risk aversion and lotteries: Uncertainty and Von Neumann-Morgenstern utility functions; Risk attitude measures (coefficient of absolute risk aversion – CARA; coefficient of relative risk aversion – CRRA); Utility and lotteries (risk premium, certainty equivalent, expected value)
  • Information asymmetries and principal agent theory; participation constraint and incentive compatible constraints
  • Signaling: Credible signals; Equilibrium analysis and principal/ agent risk attitude
  • Equilibria in inefficient markets: Insurance market and the Rothschild & Stiglitz model
- Market failures and welfare economics
  • External Effects in Consumption and Production
  • Interdependent Utility functions
  • Public Goods
  • Social welfare function
- Fiscal federalism
  • The modeling dimensions
  • Mobility and redistribution
  • Federalist system of Governments
References: Frank Cowell, Microeconomics, Principles and Analysis, Oxford University Press; H. Gravelle and R. Rees, Microeconomics, Prentice Hall.

Political Economy
The course is a relatively advanced but essentially self-contained introduction to the methods and some major applications of modern political economy.
The main topics covered by the course in chronological ordered, will be the following:
- Electoral Competition under Certainty: The Hotelling-Downs Model; The Wittman Model; Multiparty Competition; Entry
- Electoral Competition under Uncertainty: Multidimensional Policy Conflict; Divergence; Multiparty Competition; Entry; The Calculus of Voting
- Special Interest Politics: A Model of Pure Campaign Finance; Campaign Finance and Policy Choice; Informative Campaign Finance; Bargaining over Policy; Menu Auctions
- Veto Players; Policy Stability; Agenda Setting; Pivots; Portfolio Allocation; Veto Players and Special Interests
- Delegation: Baseline Model; Discretion Limits; Legislative Capacity; Bureaucratic Capacity; Administrative Procedures; Legislative Override; Delegation to Committees and Legislative Procedure
- Coalitions: Legislative Bargaining; Cohesion; Government Formation; Endogenous Supermajorities; Selectorate
- Political Agency: The Barro-Ferejohn Model; Career Concerns; Signaling Models of Political Agency
- Regime Change: Collective Action under Complete Information; Collective Action under Incomplete Information; Markov Games; Political Transitions

References: Scott Gehlbach, Formal Models of Domestic Politics, Cambridge UP; Daron Acemoglu and James Robinson, Economic Origins of Dictatorship and Democracy, Cambridge UP; Nolan McCarty and Adam Meirowitz, Political Game Thoery: An Introduction, Cambridge UP.

Game Theory
- Non cooperative games
  • Games basic tools and definitions
  • Finding games solutions
  • Dominance and Nash equilibrium
  • Mixed strategies Nash equilibrium
  • Inefficiency and instability of Nash equilibrium
  • Correlated Strategies and correlated equilibrium
  • Information: perfect, inperfect, incomplete
- Duopoly
  • Cournot, Bertrand, Stackelberg models
  • Best-reply
  • Hotelling, Morgan and Shy, models
- Auctions
  • Definitions
  • Equivalence
  • Auction strategies
  • Winner's curse
  • Bidding rings
  • Multiple auctions
- Non cooperative games: Non Transferable Utility games
  • Barganing problem between two players
  • Nash solution
  • Alternative solutions
- Non cooperative games: Transferable Utility games
  • Shapley value and axioms
  • Shapley value application
  • Banzhaf-Coleman index
  • Normalized Banzhaf-Coleman index
  • Deegan-Packel index
  • Public Goods Index-Holler
  • Johnston index
  • Nucleolus (Schmeidler)
- Examples
  • Assigment game
  • Bankruptcy game
  • Weighted majority game
  • Sequencing game
  • Production game

References: R. Gibbons, Primo Corso di Teoria dei Giochi, Il Mulino; R.B. Myerson, Game Theory: Analysis of Conflict, Harvard University Press; M.J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press; G. Owen, Game Theory, Academic Press; Luce, R. Duncan e Howard Raiffa: Games and Decisions, Wiley, New York.